Energy Storage Advance May Boost Solar Thermal Energy Potential

Engineers at Oregon State University have identified a new approach for the storage of concentrated solar thermal energy, to reduce its cost and make it more practical for wider use.

The advance is based on a new innovation with thermochemical storage, in which chemical transformation is used in repeated cycles to hold heat, use it to drive turbines, and then be re-heated to continue the cycle. Most commonly this might be done over a 24-hour period, with variable levels of solar-powered electricity available at any time of day, as dictated by demand.

The findings have been published in ChemSusChem, a professional journal covering sustainable chemistry. The work was supported by the SunShot Initiative of the U.S. Department of Energy, and done in collaboration with researchers at the University of Florida.

Conceptually, all of the energy produced could be stored indefinitely and used later when the electricity is most needed. Alternatively, some energy could be used immediately and the rest stored for later use.

storage of concentrated solar thermal energy

An advance in the storage of concentrated solar thermal energy may reduce reduce its cost and make it more practical for wider use.
Credit: Graphic by Kelvin Randhir, courtesy of the University of Flori

Storage of this type helps to solve one of the key factors limiting the wider use of solar energy — by eliminating the need to use the electricity immediately. The underlying power source is based on production that varies enormously, not just night and day, but some days, or times of day, that solar intensity is more or less powerful. Many alternative energy systems are constrained by this lack of dependability and consistent energy flow.

Solar thermal electricity has been of considerable interest because of its potential to lower costs. In contrast to conventional solar photovoltaic cells that produce electricity directly from sunlight, solar thermal generation of energy is developed as a large power plant in which acres of mirrors precisely reflect sunlight onto a solar receiver. That energy has been used to heat a fluid that in turn drives a turbine to produce electricity.

Such technology is appealing because it’s safe, long-lasting, friendly to the environment and produces no greenhouse gas emissions. Cost, dependability and efficiency have been the primary constraints

Read Full Article

 

 

If you want to know more about this and other topics directly from end users of energy storage technologies join us at one of these annual events: The Energy Storage World Forum (Grid Scale Applications), or The Residential Energy Storage Forum, or one of our Training Courses.

LATEST ARTICLES

Energy Storage Systems: the role of an Integrator

Simplifying BESS deployments by mastering their associated risks With the introduction of Battery Energy Storage Systems ‘BESS’, a new role has been created on the value chain. It is the role of a BESS integrator. The role of an integrator can be misunderstood at times or blended with other roles at other times. This is…

Read More

The UK National Energy Grid – A Story of Islands, Trading, and Energy Storage

As first seen in Energy Global, grid software acts as a modern-day map, helping to chart and navigate today’s energy grids; software engineers are tasked with carefully delineating how each region’s energy markets operate. However, looking more closely at energy markets makes clear how unique each market is – each defined by different topography, resources,…

Read More

★REVIEWS

“Probably the most interactive and well organized storage event on the calendar.”

★★★★★

Sales Director, S&C

“Great topics, competent speakers, good networking: keep it like that.”

★★★★★

TLC & SCADA Manager, FRI-EL

“High scientific content, well targeted, perfect organization.”

★★★★★

Expert Technical & Governance, Elia

Excellent networking event. The sponsorship was well worth it.”

★★★★★

Manager, ATL

View More

x